Search results for "Surrogate model"
showing 7 items of 7 documents
Automatic surrogate modelling technique selection based on features of optimization problems
2019
A typical scenario when solving industrial single or multiobjective optimization problems is that no explicit formulation of the problem is available. Instead, a dataset containing vectors of decision variables together with their objective function value(s) is given and a surrogate model (or metamodel) is build from the data and used for optimization and decision-making. This data-driven optimization process strongly depends on the ability of the surrogate model to predict the objective value of decision variables not present in the original dataset. Therefore, the choice of surrogate modelling technique is crucial. While many surrogate modelling techniques have been discussed in the liter…
Constraint handling in efficient global optimization
2017
Real-world optimization problems are often subject to several constraints which are expensive to evaluate in terms of cost or time. Although a lot of effort is devoted to make use of surrogate models for expensive optimization tasks, not many strong surrogate-assisted algorithms can address the challenging constrained problems. Efficient Global Optimization (EGO) is a Kriging-based surrogate-assisted algorithm. It was originally proposed to address unconstrained problems and later was modified to solve constrained problems. However, these type of algorithms still suffer from several issues, mainly: (1) early stagnation, (2) problems with multiple active constraints and (3) frequent crashes.…
Deep Importance Sampling based on Regression for Model Inversion and Emulation
2021
Understanding systems by forward and inverse modeling is a recurrent topic of research in many domains of science and engineering. In this context, Monte Carlo methods have been widely used as powerful tools for numerical inference and optimization. They require the choice of a suitable proposal density that is crucial for their performance. For this reason, several adaptive importance sampling (AIS) schemes have been proposed in the literature. We here present an AIS framework called Regression-based Adaptive Deep Importance Sampling (RADIS). In RADIS, the key idea is the adaptive construction via regression of a non-parametric proposal density (i.e., an emulator), which mimics the posteri…
Conflict resolution in the multi-stakeholder stepped spillway design under uncertainty by machine learning techniques
2021
Abstract The optimal spillway design is of great significance since these structures can reduce erosion downstream of the dams. This study proposes a risk-based optimization framework for a stepped spillway to achieve an economical design scenario with the minimum loss in hydraulic performance. Accordingly, the stepped spillway was simulated in the FLOW-3D® model, and the validated model was repeatedly performed for various geometric states. The results were used to form a Multilayer Perceptron artificial neural network (MLP-ANN) surrogate model. Then, a risk-based optimization model was formed by coupling the MLP-ANN and NSGA-II. The concept of conditional value at risk (CVaR) was utilized…
Advanced techniques for solving groundwater and surface water problems in the context of inverse methods and climate change.
2021
[ES] El tema de la investigación se centra en técnicas avanzadas para manejar problemas de aguas subterráneas y superficiales relacionados con métodos inversos y cambio climático. Los filtros de Kalman, con especial atención en Ensemble Smoother with Multiple Data Assimilation (ES-MDA), se analizan y mejoran para la solución de diferentes tipos de problemas inversos. En particular, la principal novedad es la aplicación de estos métodos para la identificación de series temporales. La primera parte de la tesis, luego de la descripción del método, presenta el desarrollo de un software escrito en Python para la aplicación de la metodología propuesta. El software cuenta con un flujo de trabajo f…
Towards Better Integration of Surrogate Models and Optimizers
2019
Surrogate-Assisted Evolutionary Algorithms (SAEAs) have been proven to be very effective in solving (synthetic and real-world) computationally expensive optimization problems with a limited number of function evaluations. The two main components of SAEAs are: the surrogate model and the evolutionary optimizer, both of which use parameters to control their respective behavior. These parameters are likely to interact closely, and hence the exploitation of any such relationships may lead to the design of an enhanced SAEA. In this chapter, as a first step, we focus on Kriging and the Efficient Global Optimization (EGO) framework. We discuss potentially profitable ways of a better integration of…
On Dealing with Uncertainties from Kriging Models in Offline Data-Driven Evolutionary Multiobjective Optimization
2019
Many works on surrogate-assisted evolutionary multiobjective optimization have been devoted to problems where function evaluations are time-consuming (e.g., based on simulations). In many real-life optimization problems, mathematical or simulation models are not always available and, instead, we only have data from experiments, measurements or sensors. In such cases, optimization is to be performed on surrogate models built on the data available. The main challenge there is to fit an accurate surrogate model and to obtain meaningful solutions. We apply Kriging as a surrogate model and utilize corresponding uncertainty information in different ways during the optimization process. We discuss…